SPEECH DISORDERS OF GENETIC ORIGIN IN TEACHING PRACTICE
DOI: 10.23951/2782-2575-2021-1-56-63
In recent years, there has been a significant increase in children with various speech disorders. Also, identifying the factors causing these disorders early and providing proper support is increasingly important. If the steps to correct such speech disorders are not taken quickly, secondary issues, such as communication, socialization, and educational problems, are observed. Training and corrective measures should be carried out while considering both the individual’s psychological and physiological characteristics. Identifying the cause and symptoms of a speech disorder plays an important role when developing a plan for a child’s education, upbringing, and development. These measures are crucial to providing the most suitable help to children with such disorders. The signs identified during diagnosis and those revealing the causes of the speech disorders are vital for outlining a pathogenetic description of the disorder and prescribing a set of corrective measures. Speech disorders indicate the intactness of a large part of the central nervous system, including motor and sensory areas. Moreover, they have diagnostic applications in cases of organic brain damage, malfunctions in the development of the nervous system, and mental retardation of various origins. The pedagogical process must include a full examination, as well as the proper combined support by speech disorder specialists. It is possible to carry out differential diagnoses of speech function disorders using the results of genetic studies and prepare correctional programs tailored to the identified disorders.
Ключевые слова: speech disorders, early diagnosis, genetic syndromes, correction of speech disorders
Библиография:
1. Pomberger T., Risueno-Segovia C., Gultekin Y.B., Dohmen D., Hage S.R. Cognitive control of complex motor behavior in marmoset monkeys. Nature Communications, 2019, vol. 10, is. 1, p.3796. URL: https://doi:10.1038/s41467-019-11714-8 (accessed 1 October 2019).
2. Livezey J.A., Bouchard K.E., Chang E.F. Deep learning as a tool for neural data analysis: Speech classifi cation and cross-frequency coupling in human sensorimotor cortex. PLOS Computational Biology, 2019, vol. 15, is. 9. URL: https://doi:10.1371/journal.pcbi.1007091.eCollection 2019 Sep. (accessed 1 October 2019).
3. Shriberg L.D., Strand E.A., Jakielski K.J., Mabie H.L.Estimates of the prevalence of speech and motor speech disorders in persons with complex neurodevelopmental disorders. Clinical Linguistics and Phonetics, 2019, vol. 33, is. 8, pp. 707–736. URL: https:// doi:10.1080/02699206.2019.1595732 (accessed 1 October 2019).
4. Borisov A.E. Aktual’nyye voprosy kompleksnoy reabilitatsii pri detskom tserebralnom paraliche [Currant issues in comprehensive aftercare of infantile cerebral palsy]. Vestnik Gosudarstvennogo sotsialno-gumanitarnogo universiteta – Herald of State University of Humanities and Social Sciences, 2018, no. 3 (31), pp. 3–45 (in Russian).
5. Batysheva T.T., Krapivkin A.I., Tsaregorodtsev A.D., Sukhorukov V.S., Tikhonov S.V. Reabilitatsiya detey s porazheniyem tsentral’noy nervnoy sistemy [Rehabilitation of children with the pathology of central nervous system]. Rossiyskiy vestnik perinatologii i pediatrii – Russian Bulletin of perinatology and pediatrics, 2017, vol. 62, no. 6, pp. 7–15 (in Russian).
6. Gentilleau-Lambin P., Nicli J., Richard A.F., Macchi L., Barbeau C., Nguyen S., Medjkane F., Lemaître M.P. Assessment of conversational pragmatics: A screening tool for pragmatic language impairment in a control population of children aged 6–12 years.Archives de Pédiatrie, 2019, vol. 26, is. 4, pp. 214–219. URL: https://doi:10.1016/j.arcped.2019.03.004 (accessed 2 October 2019).
7. Lopatina L.V. Analiz podkhodov k izucheniyu rechevykh i yazykovykh rasstroystv v rossiyskoy i frantsuzskoy logopedii [Analysis of approaches to the research of speech and language disorders in the Russian and French speech therapy]. Izvestiya Rossiyskogo gosudarstvennogo pedagogicheskogo universiteta im. A. I. Gertsena – Izvestia: Herzen University Journal of Humanities and Sciences, 2018, no. 190, pp. 100–107 (in Russian).
8. Diagnostic and Statisticalv Manual of Mental Disorders, Fifth Edition. Arlington, VA, American Psychiatric Association, 2013, 947 p.
9. Gribova O.E., Batyayeva S.V.K probleme opredeleniya ponyatiya “tyazhelyye narusheniya rechi” [On the problem of “severe speech disorders” determination]. Obrazovaniye. Nauka. Innovatsii: Yuzhnoye izmereniye – Education. Science. Innovations: the Southern Dimension, 2015, no. 1 (39), pp. 59–74 (in Russian).
10. Bobylova M.Yu., Braudo T.E., Kazakova M.V., Vinyarskaya I.V. Zaderzhka rechevogo razvitiya u detey: vvedeniye v terminologiyu [Delayed speech development in children: introduction in terminology]. Russkiy zhurnal detskoy nevrologii – Russian Journal of Russian Neurology, 2017, vol. 12, no. 1, pp. 56–62 (in Russian).
11. Gibadullina A.V. Zakonomernosti razvitiya rechi u detey rannego razvitiya v norme [Patterns of normal speech development in young children]. Mezhdunarodnyy studencheskiy nauchnyy vestnik, 2016, no. 5-2, pp. 182–185 (in Russian).
12. Norman R.S., Shah M.N., Turkstra L.S. Language Comprehension After Mild Traumatic Brain Injury: The Role of Speed. American Journal of Speech-Language Pathology, 2019. URL: https://doi:10.1044/2019_AJSLP-18-0203 [Epub ahead of print] (accessed 1 October 2019).
13. Bryukhovskikh L.A.Osobennosti ponimaniya rechi u detey s umstvennoy otstalostyu [Features of understanding speech in children with mental retardation].Vestnik Krasnoyarskogo gosudarstvennogo pedagogicheskogo universiteta im. V. P. Astafyeva – The bulletin of KSPU named after V. P. Astafi ev, 2009, no. 1, pp. 82–87 (in Russian).
14. Birt L., Griffi ths R., Charlesworth G., Higgs P,. Orrell M., Leung P., Poland F. Maintaining Social Connections in Dementia: A Qualitative Synthesis. Qualitative Health Research, 2019. URL: https://doi: 10.1177/1049732319874782 [Epub ahead of print] (accessed 1 October 2019).
15. Reppermund S., Heintze T., Srasuebkul P., Reeve R., Dean K., Smith M., Emerson E., Snoyman P., Baldry E., Dowse L., Szanto T., Sara G., Florio T., Johnson A., Clements M., McKenzie K., Trollor J.Health and wellbeing of people with intellectual disability in New South Wales, Australia: a data linkage cohort. BMJ Open, 2019. URL: https://doi:10.1136/bmjopen-2019-031624 (accessed 2 October 2019).
16. Operto F.F., Mazza R., Pastorino G.M.G., Verrotti A., Coppola G. Epilepsy and genetic in Rett syndrome: A review. Brain and Behavior, 2019, vol. 9, is. 5. URL: https://doi:10.1002/brb3.1250 (accessed 1 October 2019).
17. Fricano-Kugler C., Gordon A., Shin G., Gao K., Nguyen J., Berg J., Starks M., Geschwind D.H. CYFIP1 overexpression increases fear response in mice but does not affect social or repetitive behavioral phenotypes. Molecular Autism, 2019. URL: https://doi:10.1186/s13229-019-0278-0 (accessed 1 October 2019).
18. Pounraja V.K., Girirajan S.Molecular basis for phenotypic similarity of genetic disorders.Genome Med, 2019, vol. 11, is. 1, p. 24. URL: https://doi:10.1186/s13073-019-0641-y (accessed 1 October 2019).
19. Besag F.M.C., Vasey M.J.Social cognition and psychopathology in childhood and adolescence.Epilepsy & Behavior, 2019. URL: https://doi:10.1016/j.yebeh.2019.03.015 [Epub ahead of print] (accessed 3 October 2019).
20. Lesca G., Møller R.S., Rudolf G., Hirsch E., Hjalgrim H., Szepetowski P. Update on the genetics of the epilepsyaphasia spectrum and role of GRIN2A mutations. Epileptic Disorders, 2019, vol. 1, is. 21, pp. 41–47. URL: https://doi:10.1684/epd.2019.1056 (accessed 3 October 2019).
21. Einspieler C., Marschik P.B. Regression in Rett syndrome: Developmental pathways to its onset. Neuroscience & Biobehavioral Reviews, 2019. URL: https://doi:10.1016/j.neubiorev.2019.01.028 (accessed 1 October 2019).
22. Pansy J., Barones C., Urlesberger B., Pokorny F.B., Bartl-Pokorny K.D., Verheyen S., Marschik P.B., Einspieler C. Early motor and pre-linguistic verbal development in Prader-Willi syndrome – A case report. Research in Developmental Disabilities, 2019, vol. 88, pp. 16–21. URL: https://doi:10.1016/j.ridd.2019.01.012 (accessed 1 October 2019).
23. Carson R.P., Bird L., Childers A.K., Wheeler F., Duis J. Preserved expressive language as a phenotypic determinant of Mosaic Angelman Syndrome. Molecular Genetics & Genomic Medicine, 2019, vol. 7, is. 9, p.837. URL: https://doi:10.1002/mgg3.837.(accessed 1 October 2019).
24. Ostergaard J.R. Do individuals with Angelman syndrome have a maladaptive behavior? American Journal of Medical Genetics Part A, 2019. URL: https://doi:10.1002/ajmg.a.61346 [Epub ahead of print] (accessed 1 October 2019).
25. Pearson E., Wilde L., Heald M., Royston R., Oliver C. Communication in Angelman syndrome: a scoping review. Developmental Medicine & Child Neurology, 2019, vol. 61, is. 11, pp. 1266–1274. URL: https://doi:10.1111/dmcn.14257.Epub 2019 May 10 (accessed 3 October 2019).
26. Bohonowych J., Miller J., McCandless S.E., Strong T.V. The Global Prader-Willi Syndrome Registry: Development, Launch, and Early Demographics. Genes (Basel), 2019, vol. 10, is. 9. URL: https://doi:10.3390/genes10090713 (accessed 3 October 2019).
27. Mao S.J., Shen J., Xu F., Zou C.C. Quality of life in caregivers of young children with Prader-Willi syndrome. World Journal of Pediatrics, 2019. URL: https://doi:10.1007/s12519-019-00311-w [Epub ahead of print] (accessed 1 October 2019).
28. Khan A.A., Kirmani S. Mild presentation of the congenital variant Rett syndrome in a Pakistani male: expanding the phenotype of the forkhead box protein G1 spectrum. Clinical Dysmorphology, 2019. URL: https://doi:10.1097/MCD.0000000000000302 (accessed 2 October 2019).
29. Inui T., Iwama K., Miyabayashi T., Sato R., Okubo Y., Endo W., Togashi N., Kakisaka Y., Kikuchi A., Mizuguchi T., Kure S., Matsumoto N., Haginoya K. Two males with sick sinus syndrome in a family with 0.6 kb deletions involving major domains in MECP2. European Journal of Medical Genetics, 2019. URL: https://doi:10.1016/j.ejmg.2019.103769 (accessed 1 October 2019).
30. Brima T., Molholm S., Molloy C.J., Sysoeva O.V., Nicholas E., Djukic A., Freedman E.G., Foxe J.J. Auditory sensory memory span for duration is severely curtailed in females with Rett syndrome. Translational Psychiatry, 2019, vol. 9, is. 1, p.130.URL: https://doi:10.1038/s41398-019-0463-0 (accessed 2 October 2019).
31. Key A.P., Jones D., Peters S.Spoken word processing in Rett syndrome: Evidence from event-related potentials. International Journal of Developmental Neuroscience, 2019, vol. 73, pp. 26–31. URL: https://doi:10.1016/j.ijdevneu.2019.01.001 (accessed 3 October 2019).
32. Clarkson T., LeBlanc J., DeGregorio G., Vogel-Farley V., Barnes K., Kaufmann W.E., Nelson C.A. Adapting the Mullen Scales of Early Learning for a Standardized Measure of Development in Children With Rett Syndrome. Journal of Intellectual & Developmental Disability, 2017, vol. 55, is. 6, pp. 419–431.URL: https://doi:10.1352/1934-9556-55.6.419 (accessed 1 October 2019).
33. Perez Y., Menascu S., Cohen I., Kadir R., Basha O., Shorer Z., Romi H., Meiri G., Rabinski T., Ofi r R., Yeger-Lotem E., Birk O.S.RSRC1 mutation affects intellect and behaviour through aberrant splicing and transcription, downregulating IGFBP3. Brain, 2018, vol. 141, is. 4, pp. 961–970.URL: https://doi:10.1093/brain/awy045 (accessed 2 October 2019).
34. Martínez-Rodríguez E., Martín-Sánchez A., Coviello S., Foiani C., Kul E., Stork O., Martínez-García F., Nacher J., Lanuza E., Santos M., Agustín-Pavón C. Lack of MeCP2 leads to region-specifi c increase of doublecortin in the olfactory system. Brain Structure and Function, 2019, vol. 224, is. 4, pp. 1647–1658. URL: https://doi:10.1007/s00429-019-01860-6.Epub 2019 Mar 28 (accessed 2 October 2019).
35. Ehrhart F., Coort S.L., Eijssen L., Cirillo E., Smeets E.E., Bahram Sangani N., Evelo C.T., Curfs L.M.G. Integrated analysis of human transcriptome data for Rett syndrome fi nds a network of involved genes. The World Journal of Biological Psychiatry, 2019, pp. 1–14. URL: https://doi:10.1080/15622975.2019.1593501 [Epub ahead of print] (accessed 1 October 2019).
36. Neira-Fresneda J., Potocki L. Neurodevelopmental Disorders Associated with Abnormal Gene Dosage: Smith-Magenis and Potocki-Lupski Syndromes. Journal of Pediatric Genetics, 2015, vol. 4, is. 3.pp. 159–167. URL: https://doi:10.1055/s-0035-1564443. Epub 2015 Sep 28 (accessed 1 October 2019).
37. Laje G.L., Morse R., Richter W., Ball J., Pao M., Smith A.C. Autism spectrum features in Smith-Magenis syndrome. American Journal of Medical Genetics Part C, 2010, vol. 154C, is. 4, pp. 456–462. URL: https://doi:10.1002/ajmg.c.30275 (accessed 3 October 2019).
38. Finucane B., Dirrigl K.H., Simon E.W. Characterization of self-injurious behaviors in children and adults with Smith-Magenis syndrome. American Journal on Mental Retardation, 2001, vol. 106, is. 1, pp. 52–58.
39. Wolters P.L., Gropman A.L., Martin S.C., Smith M.R., Hildenbrand H.L., Brewer C.C., Smith A.C. Neurodevelopment of children under 3 years of age with Smith-Magenis syndrome. Pediatric Neurology, 2009. vol. 41, is. 4. URL: https://doi: 10.1016/j.pediatrneurol.2009.04.015 (accessed 2 October 2019).
40. Bissell S., Wilde L., Richards C., Moss J., Oliver C. The behavioural phenotype of Potocki-Lupski syndrome: a cross-syndrome comparison. Journal of Neurodevelopmental Disorders, 2018, vol. 10, iss.1, p.2.URL: https://doi:10.1186/s11689-017-9221-x (accessed 2 October 2019).
41. Zhang F., Potocki L., Sampson J.B., Liu P., Sanchez-Valle A., Robbins-Furman P., Navarro A.D., Wheeler P.G., Spence J. E., Brasington C.K., Withers M.A., Lupski J.R. Identifi cation of uncommon recurrent Potocki-Lupski syndrome-associated duplications and the distribution of rearrangement types and mechanisms in PTLS.American Journal of Human Genetics, 2010, vol. 86, is. 3, pp. 462–470.URL: https://doi:10.1016/j.ajhg.2010.02.001.Epub 2010 Feb 25 (accessed 1 October 2019).
42. Sanchez-Valle A., Pierpont M.E., Potocki L. The severe end of the spectrum: Hypoplastic left heart in Potocki-Lupski syndrome. American Journal of Medical Genetics Part A, 2011, vol. 155A, is. 2, pp. 363–366. URL: https://doi:10.1002/ajmg.a.33844 (accessed 3 October 2019).
43. Soler-Alfonso C., Motil K.J., Turk C.L., Robbins-Furman P., Friedman E.M., Zhang F., Lupski J.R., Fraley J.K., Potocki L. Potocki- Lupski syndrome: a microduplication syndrome associated with oropharyngeal dysphagia and failure to thrive. The Journal of Pediatrics, 2011, vol. 158, is. 4, pp. 655–659. URL: https://doi:10.1016/j.jpeds.2010.09.062 (accessed 3 October 2019).
44. Treadwell-Deering D.E., Powell M.P., Potocki L. Cognitive and behavioral characterization of the Potocki-Lupski syndrome (duplication 17p11.2). Journal of Developmental and Behavioral Pediatrics, 2010, vol. 31, is. 2, pp. 137–143. URL: https://doi:10.1097/DBP.0b013e3181cda67e (accessed 1 October 2019).
45. Crawford D.C., Acuña J.M., Sherman S.L. FMR1 and the fragile X syndrome: human genome epidemiology review. Genetics in Medicine, 2001, vol. 3, is. 5, pp. 359–371 (accessed 3 October 2019).
46. Hughes K.R., Hogan A.L., Roberts J.E., Klusek J. Gesture Frequency and Function in Infants With Fragile X Syndrome and Infant Siblings of Children With Autism Spectrum Disorder. Journal of Speech Language and Hearing Research, 2019, vol. 62, is. 7, pp. 2386–2399. URL: https://doi:10.1044/2019_JSLHR-L-17-0491 (accessed 2 October 2019).
47. Hamrick L.R., Seidl A., Tonnsen B.L. Acoustic properties of early vocalizations in infants with fragile X syndrome. Autism Research, 2019. URL: https://doi:10.1002/aur.2176 [Epub ahead of print] (accessed 2 October 2019).
48. Eckert E.M., Dominick K.C., Pedapati E.V., Wink L.K., Shaffer R.C., Andrews H., Choo T.H., Chen C., Kaufmann W.E., Tartaglia N., Berry-Kravis E.M., Erickson C.A. Pharmacologic Interventions for Irritability, Aggression, Agitation and Self- Injurious Behavior in Fragile X Syndrome: An Initial Cross-Sectional Analysis. Journal of Autism and Developmental Disorders, 2019. URL: https://doi:10.1007/s10803-019-04173-z (accessed 2 October 2019).
49. Zafarullah M., Tassone F. Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). Methods in Molecular Biology, 2019, vol. 1942, pp. 173–189. URL: https://doi:10.1007/978-1-4939-9080-1_15 (accessed 2 October 2019).
50. Rojare C., Opdenakker Y., Laborde A., Nicot R., Mention K., Ferri J. The Smith-Lemli-Opitz syndrome and dentofacial anomalies diagnostic: Case reports and literature review. International Orthodontics, 2019, vol. 17, is. 2, pp. 375–383. URL: https://doi: 10.1016/j.ortho.2019.03.020 (accessed 3 October 2019).
51. Waterham H.R., Hennekam R.C. Mutational spectrum of Smith-Lemli-Opitz syndrome. American Journal of Medical Genetics Part C, 2012, vol. 160C, is. 4, рр. 263–284. URL: https://doi:10.1002/ajmg.c.31346 (accessed 3 October 2019).
52. Donoghue S.E., Pitt J.J., Boneh A., White S.M. Smith-Lemli-Opitz syndrome: clinical and biochemical correlates. Journal of Pediatric Endocrinology and Metabolism, 2018, vol. 31, is. 4, pp. 451–459. URL: https://doi:10.1515/jpem-2017-0501 (accessed 3 October 2019).
53. Nowaczyk M.J., Irons M.B. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. American Journal of Medical Genetics Part C, 2012, vol. 160C, is. 4, pp. 250–562. URL: https://doi:10.1002/ajmg.c.31343 (accessed 2 October 2019).
54. DeBarber A.E., Eroglu Y., Merkens L.S., Pappu A.S., Steiner R.D. Smith-Lemli-Opitz syndrome. Expert Reviews in Molecular Medicine, 2011, vol. 13. URL: https://doi:10.1017/S146239941100189X (accessed 1 October 2019).
55. Panasenko K.E. Soderzhaniye i napravlennost’ deyatel’nosti uchitelya-logopeda po razvitiyu kommunikativnykh navykov u doshkol’nikov s rasstroystvami autisticheskogo spektra [The content and focus of teacher-speech therapist‘s development of communication skills in preschoollers with autism spectrum disorders]. Sovremennye naukoemkiye tekhnologii – Modern High Technologies, 2018, no. 8, pp. 209–213 (in Russian).
56. Le T.T.H., Tran N.T., Dao T.M.L., Nguyen D.D., Do H.D., Ha T.L., Kühn R., Nguyen T.L., Rajewsky K., Chu V.T. Effi cient and Precise CRISPR/Cas9-Mediated MECP2 Modifi cations in Human-Induced Pluripotent Stem Cells. Frontiers in Genetics, 2019, vol. 10, pp. 625–637. URL: https://doi:10.3389/fgene.2019.00625.ECollection 2019 (accessed 1 October 2019).
57. Gogliotti R.G., Niswender C.M. A Coordinated Attack: Rett Syndrome Therapeutic Development. Trends in Pharmacological Sciences, 2019, vol. 40, is. 4, pр. 233–236. URL: https://doi:10.1016/j.tips.2019.02.007 (accessed 1 October 2019).
58. Banerjee A., Miller M.T., Li K., Sur M., Kaufmann W.E. Towards a better diagnosis and treatment of Rett syndrome: a model synaptic disorder. Brain, 2019, vol. 142, is. 2, pp. 239–248. URL: https://doi: 10.1093/brain/awy323.(accessed 1 October 2019).
Выпуск: 1, 2021
Серия выпуска: Issue 1
Рубрика:
Страницы: 56 — 63
Скачиваний: 732